ATTRACTING CYCLES IN p-ADIC DYNAMICS AND HEIGHT BOUNDS FOR POST-CRITICALLY FINITE MAPS
نویسنده
چکیده
A rational function φ(z) of degree d ≥ 2 with coefficients in an algebraically closed field is post-critically finite (PCF) if all of its critical points have finite forward orbit under iteration. We show that the collection of PCF rational functions is a set of bounded height in the moduli space of rational functions over the complex numbers, once the well-understood family known as flexible Lattès maps is excluded. As a consequence, there are only finitely many conjugacy classes of non-Lattès PCF rational maps of a given degree defined over any given number field. The key ingredient of the proof is a non-archimedean version of Fatou’s classical result that every attracting cycle of a rational function over C attracts a critical point.
منابع مشابه
Heights, algebraic dynamics and Berkovich analytic spaces
The present paper is an exposition on heights and their importance in the modern study of algebraic dynamics. We will explain the idea of canonical height and its surprising relation to algebraic dynamics, invariant measures, arithmetic intersection theory, equidistribution and p-adic analytic geometry. AMS Classification 2000: Primary: 14G40; Secondary: 11G50, 28C10, 14C17.
متن کاملA simple model for accretion disks in the post-Newtonian approximation
p { margin-bottom: 0.1in; direction: ltr; line-height: 120%; text-align: left; }a:link { } In this paper, the evolution of accretion disks in the post-Newtonian limit has been investigated. These disks are formed around gravitational compact objects such as black holes, neutron stars, or white dwarfs. Although most analytical researches have been conducted in this context in the framework o...
متن کاملThe effect of water column stability on underwater oil blowouts plume dynamics and peeling height
Considering the increase in number of offshore oil production projects and for better understanding of plume dynamics in accidental underwater oil blowouts, a series of laboratory experiments in a square cross section open top basin were carried out to investigate the effect of changes in seawater stratification and water column stability on plume dynamics and peeling height. Accordingly the o...
متن کاملAnalysis of a simplified hopping robot
This article offers some analytical results concerning simplified models of Raibert's hopper. We represent the task of achieving a recurring hopping height for an actuated "ball" robot as a stability problem in a nonlinear discrete dynamical control system. We model the properties of Raibert's control scheme in a simplified fashion and argue that his strategy leads to closed-loop dynamics gover...
متن کاملComputational fluid dynamics analysis and geometric optimization of solar chimney power plants by using of genetic algorithm
In this paper, a multi-objective optimization method is implemented by using of genetic algorithm techniques in order to determine optimum configuration of solar chimney power plant. The objective function which is simultaneously considered in the analysis is output power of the plant. Output power of the system is maximized. Design parameters of the considered plant include collector radius (R...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014